ENERGYPACK 40FT - SCALABLE ALL-IN-ONE MICROGRID SOLUTION FOR MINING.
Grid stabilization
The EnergyPack is able to provide grid support services and can autonomously form a grid, enabling customers to operate independently during grid outages.

Flexible in use
The EnergyPack answers a multitude of needs: storage of wind and solar power in microgrids, uninterruptible power source (UPS), balancing peak loads, positive and negative control power, and many more.

Scalable in size
Storage capacity can be adapted easily to individual power storage requirements.

Seamless integration with existing power grids
The system can be integrated with existing power grids, making it easy to expand your capacity.

Plug-and-play design
The highly mobile, fully integrated plug-and-play design ensures fast, easy installation, reducing setup times and costs. Power is available more quickly and at lower cost.

Black start capability
The storage container can be used as a black start unit due to its grid-mimicking capability.

Ultra-fast response
By bringing power on-stream immediately, the EnergyPack provides essential fast response capability for better power quality, black starts, frequency response, and backup applications.

Comprehensive safety features
A multi-level safety concept monitors the batteries, fire alarm and extinguishing system.

Digitally connected
The EnergyPack is equipped with a data logger providing access to digital solutions from us, including remote monitoring, fast and reliable service support and – coming soon – further features such as predictive failure prevention and operational optimization.

ENERGYPACK SOLUTION.
The new EnergyPack is a key component for improving the reliability and profitability of mine-site microgrids. It stores electricity from any source – diesel or gas-powered gensets, wind turbines or solar panels – and delivers it when needed. The EnergyPack is a scalable, all-in-one solution.
Supply reliability means cost effectiveness. Electricity costs represent an important share of a mine’s life-cycle costs, depending on the type of mine. High electricity consumption is usually needed for mine site infrastructure, e.g. mining accommodation, crushing and milling processes, conveying or pumping and transport. However, more important than the cost of generating electricity is the reliability of supply, because if any of the processes are interrupted by a power failure, the whole mine operation may come to a halt. Using our Microgrid solutions will help to increase renewable energy supply while providing greater reliability to the overall mining process.

Multiple Applications. The Energypack.

Mining companies are required to operate in more remote locations as resources become more scarce. In this case off-grid solutions are crucial for mining operations.

Supply reliability means cost effectiveness
Electricity costs represent an important share of a mine’s life-cycle costs, depending on the type of mine. High electricity consumption is usually needed for mine site infrastructure, e.g. mining accommodation, crushing and milling processes, conveying or pumping and transport. However, more important than the cost of generating electricity is the reliability of supply, because if any of the processes are interrupted by a power failure, the whole mine operation may come to a halt. Using our Microgrid solutions will help to increase renewable energy supply while providing greater reliability to the overall mining process.

Stand-alone facilities (e.g. accommodation on a mine site)
Battery storage makes it easier to integrate renewables (solar and wind) to a stand-alone grid, cutting cost and ensuring clean, reliable, quiet power all year round. We offer you the most suitable and economical solution for your needs.

Remote mining locations
Easy to install and maintain, the Energypack ensures year-round stable frequency and voltage, a guaranteed power supply, and the availability of backup power when it’s needed.

Fixed plant for mining
An independent power supply, the elimination of grid charges, a green image and emergency power supplies: clear benefits for mines with high-power demands.

Grid stabilization
Batteries respond to frequency changes within milliseconds, feeding power when frequency drops, and absorbing power from the grid as soon as frequency rises.

Infrastructure on a mine site
Electric equipment and vehicles need charging quickly without straining the grid. Battery charging stations can use green electricity from local, renewable resources.
COMPACT, FLEXIBLE, AUTONOMOUS: INSTANT POWER WHEREVER YOU NEED IT.

Housing
This fully equipped 40-foot ISO container is as tough as they come and has been custom-designed for harsh environments, offering superb protection from dust, insects, humidity and heat - both inside and out. A self-contained drop-in solution, it is ideal for applications and projects in harsh environments with challenging logistics. Short delivery times and fast installation make this a low-cost solution that is quick and easy to get up and running.

— The housing is divided into four sections: inverter room, battery room, control room and intermediate space
— Overall dimensions, incl. air-conditioning (m): 12.2 x 2.4 x 2.9 (4.3)
— Container only (m): 12.2 x 2.4 x 2.9

Batteries and Battery Management System
The battery bank consists of 2 x 7 vertical racks (optionally 2 x 9 racks) located to the left and right of the container’s central aisle. Each rack contains 11 battery modules, each with 22 cells connected in series, plus one battery management system (BMS) whose job it is to monitor and control the battery modules. The BMS units connect the vertical racks to a power switch in one of two DC switch cabinets, one on each side of the container. The circuit breakers are connected to the inverter, allowing each rack to be disconnected from the inverter as required. The BMS units are connected together, and to the control cabinet, via a master BMS.

— 2 x 7 vertical racks (optionally 2 x 9 racks), each with 11 battery modules and a battery management system (BMS)
— 11 battery modules with 22 cells each
— Special protection design for each level: cell level, module level, rack level, and system level
— High-quality cells from a leading manufacturer
— 2C rate

Inverter
The inverter is produced by a major European manufacturer. It operates bidirectionally, converting AC from the grid into a DC charge to the batteries - as well as regulating the voltage feed - and then converting DC to AC during the discharging process for feeding into the upstream grid. The inverter:

— Provides local grid functionality and black start capability
— Operates bidirectionally
— Offers on-grid functionality: static grid support, dynamic grid support (FRT) and active islanding detection (AID)
— Supports power management functions (peak shaving, energy shifting, etc.)

Transformer
The transformer is the interface to the upstream power grid. Its primary task is to transform the grid voltage to the level required by the inverter. It also handles the power feed into the battery container. The transformer:

— Is housed in a separate 10 ft container (weight: 8.0 metric tons)
— Is connected to the electricity grid
— Regulates the inverter’s AC output voltage
— Increases voltage to the level of the customized grid solution
— Comes with a fire alarm system and fire extinguishers

Air Conditioning
The cooling equipment is located on the container roof and feeds cool air to the battery and control rooms.

— Keeps the battery modules working at the required temperature
— Draws warm air from the center of the aisle and blows cold air through the racks to the left and right

Safety Features
The EnergyPack 40ft features a comprehensive safety concept comprising:

— Fire detection system
— Novec1230 extinguishing system
— Smoke detector
— Escape route lighting
— Emergency-stop button on every access door and in the inverter room
— Fused 24V DC supply to BMS / modules / control cabinet
— Gas warning system

Specifications (40ft)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Power</td>
<td>2,515 kW (DC)/ 2,475 kVA (AC)</td>
</tr>
<tr>
<td>Nominal capacity range</td>
<td>700 – 1,260 kWh</td>
</tr>
<tr>
<td>Current range</td>
<td>1,560 – 2,808 A</td>
</tr>
<tr>
<td>Rated voltage/voltage range</td>
<td>Customer specific</td>
</tr>
<tr>
<td>Rated frequency</td>
<td>50/60 Hz</td>
</tr>
<tr>
<td>Battery efficiency (round-trip)</td>
<td>92.5% (2C at 80%)</td>
</tr>
<tr>
<td>Cell chemistry</td>
<td>Lithium-ion</td>
</tr>
<tr>
<td>C-rate</td>
<td>2C</td>
</tr>
<tr>
<td>DC voltage range</td>
<td>750 – 992 V (DC)</td>
</tr>
<tr>
<td>Specified cycles at 2C at 80% DoD</td>
<td>3,600</td>
</tr>
</tbody>
</table>

Any specifications, descriptions, values, data, or other information related to dimensions, power, or other technical performance criteria of the goods as provided in this general product information are to be understood as non-binding and may be subject to further changes such as, but not limited to, technical evolution at any time. Version: 09.2018, materials and specifications subject to change due to technical advances.