

CLEAN, AFFORDABLE AND RELIABLE ENERGY SUPPLY FOR REMOTE VIETNAMESE VILLAGE

Microgrids deliver cost effective and sustainable off-grid solutions for remote locations

Executive Summary

Remote towns and villages often do not have access to a suitable grid connection and are traditionally tied in to using expensive and carbon-intensive diesel generation. This Use Case shows an example of how a remote village in Vietnam can cut energy costs by 48%, whilst at the same time generating over 56% of their energy from renewables.

ENVIRONMENTAL IMPACT

I	Who:	Local utility / network provider currently supplying a village with 100% diesel generation
	Where:	Vietnam
	Why:	Looking for an off-grid energy supply that is a reliable, affordable and green alternative to conventional diesel-only generation, with a focus on reducing energy costs and carbon emisisons.
	Main benefits	 Access to power Energy cost optimization Positive environmental impact

OPTIMIZING ENERGY COSTS WITH MICROGRIDS

To demonstrate the potential for savings with microgrids, we have calculated an example business case for a village in Vietnam, using HOMER GRID[™] simulation software.*

1.400,00

1.200,00

1.000,00

800.00

[kW]

Typical daily load profile

Annual Electricity demand: 4 GWh

Annual Peak Load: 2.1 kW

Fluctuating demand throughout the day represents an opportunity for energy storage to smooth the demand profile

Towns and villages located in remote locations often do not have access to a grid connection and require an off-grid energy supply. The conventional diesel solution is carbonintensive and expensive, with costs driven by high fuel costs (transport & storage) and operation and maintenance costs of the generators.

to install Photovoltaics (PV) and take advantage of plentiful cheap renewable energy. With a fluctuating demand profile and high annual peak, a combination of Battery Energy Storage (BESS) and traditional diesel generation is required to provide a stable and reliable supply.

ANALYSIS OF THE BUSINESS CASE FOR PV AND BESS

In this use case we compare the conventional case, where 100% power is supplied by diesel generation, with an optimised microgrid solution.

Investing in microgrid solutions with PV and BESS

Conventional case:

The conventional case consists of 2.4MW diesel generation providing all of the energy for the village.

Total capital investment:

€ 804k

Microgrid solution:

The microgrid solution requires a large capital investment with $2MW_p$ PV generation and a large 5MWh battery to balance the load. In addition, the same-sized diesel generator as in the conventional case is also required for back-up power, peak load and extended periods with less sunshine (e.g. over night, winter).

Total capital investment:

€ 3.54M

Significant operational cost savings

Conventional case

In the conventional case, all energy is generated by diesel with an assumed cost of €0.60/liter. Operating and maintenance (O&M) costs of the diesel generators are also high due to the high running hours (24/7 operation).

Total operating costs:

€ 1,160k / year

Microgrid solution:

In the microgrid case, 56% of the annual energy generated is produced from the PV panels resulting in reduced operating hours of the generators and therefore reduced O&M costs. The additional use of the battery to enable the generators to run at more efficient operating point, enables an overall fuel reduction of over 70%.

Operating costs of the BESS and PV installations are relatively small allowing significant annual operational savings.

Total operating costs:

€ 357k / year

Payback Period

Despite a larger upfront capital investment of &3.5m, 4.4 times higher than the base case, the microgrid solution delivers a very fast pay back period of just 3.3 years.

This is mainly achieved through the low energy costs from the PV enabling significant operational savings of \in 803k per year. Across the lifetime of the installation (>20 years) this provides a well worthwhile investment.

OPEX 0 €250k €500k €750k €1.000k Conventional case Microgrid solution • Fuel • Diesel O&M • PV O&M • BESS O&M

Cost comparison

MICROGRID SERVICES, SYSTEM INTEGRATION AND SMART CONTROL

Our microgrid systems offer a wide variety of solutions and services. Each can be individually designed to serve specific needs. Special microgrid services we offer include consulting, planning, the single-source supply of hardware and software, as well as installation and maintenance.

On-grid / off-grid

and the second s

Gas and diesel generators Energy Storage System (ESS)

Start saving costs with microgrids

Microgrid controller

Are you curious if microgrids can help your facilities save on energy costs?

Contact us today at info@ps.rolls-royce.com Or call +49 7541 90-7 7777

Rolls-Royce Group www.mtu-solutions.com

The Rolls-Royce name, Rolls-Royce badge and Rolls-Royce monogram logos are registered Trade Marks of Rolls-Royce plc Photo by Jack Young on Unsplash