Diesel Generator Set

MTU 16V2000 DS1100

380V - 415V/50 Hz/prime power for stationary emergency/fuel consumption optimized/16V2000G26F/air charge air cooling

Product highlights

Benefits
- Low fuel consumption
- Optimized system integration ability
- High reliability and availability of power
- Long maintenance intervals
- Optimized ratio between size and power
- Wide operating range without derating

Support
- Global product support offered

Standards
- Engine-generator set is designed and manufactured in facilities certified to standards ISO 2008:9001 and ISO 2004:14001
- Generator set complies to G3 according to ISO 8528
- Generator meets NEMA MG1, BS5000, ISO, DIN EN and IEC standards
- NFPA 110

Power rating
- System rating: 1000 kVA
- Accepts rated load in one step per NFPA 110
- Generator set complies to G3 according to ISO 8528-5
- Generator set exceeds load steps according to ISO 8528-5

Performance assurance certification (PAC)
- Engine-generator set tested to ISO 8528-5 for transient response
- 85% load factor for continuous power applications
- Verified product design, quality and performance integrity
- All engine systems are prototype and factory tested

Complete range of accessories available
- Control panel
- Power panel
- Fuel system
- Fuel connections with shut-off valve mounted to base frame
- Starting/charging system
- Exhaust system
- Mechanical radiator
- Oversized voltage alternators

Emissions
- Fuel consumption optimized
- TA-Luft, Tier 2 compliant and NEA (ORDE) optimization optionally available

Certifications
- CE certification option
- VDE4110 Certification
Engine

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>MTU</td>
<td>MTU</td>
</tr>
<tr>
<td>Model</td>
<td>16V2000G26F</td>
<td>16V2000G26F</td>
</tr>
<tr>
<td>Type</td>
<td>4-cycle</td>
<td>4-cycle</td>
</tr>
<tr>
<td>Arrangement</td>
<td>16V</td>
<td>16V</td>
</tr>
<tr>
<td>Displacement (l)</td>
<td>35.7</td>
<td>35.7</td>
</tr>
<tr>
<td>Bore (mm)</td>
<td>135</td>
<td>135</td>
</tr>
<tr>
<td>Stroke (mm)</td>
<td>156</td>
<td>156</td>
</tr>
<tr>
<td>Compression ratio</td>
<td>17.5</td>
<td>17.5</td>
</tr>
<tr>
<td>Rated speed (rpm)</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>Engine governor</td>
<td>ADEC (ECU 9)</td>
<td>ADEC (ECU 9)</td>
</tr>
<tr>
<td>Speed regulation</td>
<td>± 0.25%</td>
<td>± 0.25%</td>
</tr>
<tr>
<td>Max power (kW/m)</td>
<td>890</td>
<td>890</td>
</tr>
<tr>
<td>Mean effective pressure (bar)</td>
<td>19.9</td>
<td>19.9</td>
</tr>
<tr>
<td>Air cleaner</td>
<td>dry</td>
<td>dry</td>
</tr>
</tbody>
</table>

Fuel System

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum fuel lift (m)</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Total fuel flow (l/min)</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

Fuel Consumption

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>At 100% of power rating (l/hr)</td>
<td>205/191</td>
<td>216/201</td>
</tr>
<tr>
<td>At 75% of power rating (l/hr)</td>
<td>156/194</td>
<td>165/205</td>
</tr>
<tr>
<td>At 50% of power rating (l/hr)</td>
<td>108/202</td>
<td>115/214</td>
</tr>
</tbody>
</table>

Lube Oil System

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total oil system capacity (l)</td>
<td>102</td>
<td>102</td>
</tr>
<tr>
<td>Max. lube oil temp. (alarm) (°C)</td>
<td>103</td>
<td>103</td>
</tr>
<tr>
<td>Max. lube oil temp. (shutdown) (°C)</td>
<td>105</td>
<td>105</td>
</tr>
<tr>
<td>Min. lube oil pressure (alarm) (bar)</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>Min. lube oil pressure (shutdown) (bar)</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Combustion Air Requirements

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustion air volume (m³/s)</td>
<td>1.03</td>
<td>1.19</td>
</tr>
<tr>
<td>Max. air intake restriction (mbar)</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

Cooling/Radiator System

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Coolant flow rate (HT circuit) (m³/hr)</td>
<td>41.6</td>
<td>41.6</td>
</tr>
<tr>
<td>Heat rejection to coolant (kW)</td>
<td>370</td>
<td>350</td>
</tr>
<tr>
<td>Heat radiated to charge air cooling (kW)</td>
<td>145</td>
<td>205</td>
</tr>
<tr>
<td>Fan power for mech. radiator (40°C) (kW)</td>
<td>43.4</td>
<td>43.4</td>
</tr>
<tr>
<td>Fan power for mech. radiator (50°C) (kW)</td>
<td>43.4</td>
<td>43.4</td>
</tr>
<tr>
<td>Air flow required for mech. radiator (40°C) cooled unit (m³/min)</td>
<td>1462</td>
<td>1462</td>
</tr>
<tr>
<td>Air flow required for mech. radiator (50°C) cooled unit (m³/min)</td>
<td>1462</td>
<td>1462</td>
</tr>
</tbody>
</table>

Exhaust System

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhaust gas temp. (after turbocharger) (°C)</td>
<td>530</td>
<td>515</td>
</tr>
<tr>
<td>Exhaust gas volume (m³/s)</td>
<td>2.78</td>
<td>3.07</td>
</tr>
<tr>
<td>Maximum allowable back pressure (mbar)</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Minimum allowable back pressure (mbar)</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

Generator

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection class</td>
<td>IP23</td>
<td>IP23</td>
</tr>
<tr>
<td>Insulation class</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Voltage regulation (steady state)</td>
<td>± 0.25%</td>
<td>± 0.25%</td>
</tr>
<tr>
<td>Rado interference class</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

1 All data refers only to the engine and is based on ISO standard conditions (25°C and 100m above sea level).
2 Emission optimized data refer to TA-Luft optimized and NEA (ORDE) optimized/Tier 2 compliant engines.
3 Values referenced are in accordance with ISO 3046-1. Conversion calculated with fuel density of 0.83 g/ml. All fuel consumption values refer to rated engine power.
Standard and optional features

System ratings (kW/kVA)

<table>
<thead>
<tr>
<th>Generator model</th>
<th>Voltage</th>
<th>kWel</th>
<th>kVA*</th>
<th>AMPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leroy Somer LSA 50.2 M6 (Low voltage Leroy Somer standard)</td>
<td>380 V</td>
<td>800</td>
<td>1000</td>
<td>1519</td>
</tr>
<tr>
<td></td>
<td>400 V</td>
<td>800</td>
<td>1000</td>
<td>1443</td>
</tr>
<tr>
<td></td>
<td>415 V</td>
<td>800</td>
<td>1000</td>
<td>1391</td>
</tr>
<tr>
<td>Leroy Somer LSA 50.2 L7 (Low voltage Leroy Somer oversized)</td>
<td>380 V</td>
<td>800</td>
<td>1000</td>
<td>1519</td>
</tr>
<tr>
<td></td>
<td>400 V</td>
<td>800</td>
<td>1000</td>
<td>1443</td>
</tr>
<tr>
<td></td>
<td>415 V</td>
<td>800</td>
<td>1000</td>
<td>1391</td>
</tr>
<tr>
<td>Marathon 740RS7183 (Low voltage Marathon standard)</td>
<td>380 V</td>
<td>800</td>
<td>1000</td>
<td>1519</td>
</tr>
<tr>
<td></td>
<td>400 V</td>
<td>800</td>
<td>1000</td>
<td>1443</td>
</tr>
<tr>
<td></td>
<td>415 V</td>
<td>800</td>
<td>1000</td>
<td>1391</td>
</tr>
<tr>
<td>Marathon 742RS7185 (Low voltage Marathon oversized)</td>
<td>380 V</td>
<td>800</td>
<td>1000</td>
<td>1519</td>
</tr>
<tr>
<td></td>
<td>400 V</td>
<td>800</td>
<td>1000</td>
<td>1443</td>
</tr>
<tr>
<td></td>
<td>415 V</td>
<td>800</td>
<td>1000</td>
<td>1391</td>
</tr>
</tbody>
</table>

* cos phi = 0.8
** BE, fuel optimized: max. power available up to: open power unit 40°C/400m; TAL, EPA Tier 2 compl., NEA: standard operating conditions/open power unit 25°C/100m

Electrical outputs may vary depending on generator voltage and ambient conditions. For power outputs consult your MTU dealer.

Intake air depression/mbar: 15mbar
Exhaust back pressure/mbar: 30mbar

Engine

- 4-Cycle
- Standard single stage air filter
- Oil drain extension & shut-off valve
- Full flow oil filters
- Closed crankcase ventilation
- Governor-electronic isochronous ADEC/ECU9
- Common rail fuel injection
- Dry exhaust manifold
- Electric starting motor (24V)
- Fuel consumption optimized engine
- TA-Luft optimized engine
- Tier 2 optimized engine
- NEA (ORDE) optimized engine

Generator

- Leroy Somer low voltage generator
- Meets NEMA MG1, BS5000,
IEC 60034-1, VDE 0530,
DIN EN 12601, AS1359
and ISO 8528 requirements
- Superior voltage waveform
- Solid state, volts-per-Hertz regulator
- 4 pole three-phase synchronous generator
- Brushless, self-excited, self-regulating, self-ventilated
- Digital voltage regulator
- Anti condensation heater
- Stator winding Y-connected, accessible neutral (brought out)
- Protection IP 23
- less than 5% harmonic distorsion
- 2/3 pitch stator windings
- No load to full load regulation
- ± 0.25% voltage regulation no load to full load
- Insulation class H, utilization acc. to H
- Radio suppression EN55011,
group 1, cl. B
- Short circuit capability 3xIn for 10sec
- Sustained short circuit current of up to 300% of the rated current for up to 10 seconds (Leroy Somer generator)
- Winding and bearing RTDs (without monitoring)
- Excitation by AREP + PMI
- Mounting of CT’s: 3x 2 core CT’s
- Voltage setpoint adjustment ±10V
- Sustained short circuit current of up to 250% of the rated current for up to 10 seconds (Marathon generator)
- Marathon low voltage generator
- Oversized generator

*Represents standard features
**Represents optional features
Standard and optional features

Cooling system
- Jacket water pump
- Thermostat(s)
- Air charge air cooling
- Mechanical radiator
- Jacket water heater

Control Panel
- Pre-wired control cabinet for easy application of customized controller (V1+)
- Island operation (V2)
- Automatic mains failure operation with ATS (V3a)
- Automatic mains failure operation incl. control of generator and mains breaker (V3b)
- Island parallel operation of multiple gensets (V4)
- Automatic mains failure operation with short (< 10s) mains parallel overlap synchronization (V5)
- Mains parallel operation of a single genset (V6)

- Mains parallel operation of multiple gensets (V7)
- Basler controller
- Deif controller
- Complete system metering
- Digital metering
- Engine parameters
- Generator protection functions
- Engine protection
- SAE J1939 engine ECU communications
- Parametrization software
- Multilingual capability
- Multiple programmable contact inputs
- Multiple contact outputs

- Event recording
- IP 54 front panel rating with integrated gasket
- Different expansion modules
- Remote annunciator
- Daytank control
- Generator winding temperature monitoring
- Generator bearing temperature monitoring
- Differential protection with multi-function protection relay
- Modbus RTU-TCP gateway

Power Panel
- Available in 600x600
- Phase monitoring relay 230V/400V
- Supply for battery charger
- Supply for jacket water heater
- Plug socket cabinet for 230V compatible Euro

Fuel system
- Flexible fuel connectors mounted to base frame
- Fuel filter with water separator
- Switchable fuel filter with water separator
- Fuel cooler

Starting/charging system
- 24V starter
- Starter batteries, cables, rack, disconnect switch
- Battery charger
- Redundant starter 2x7.5KW

Mounting system
- Welded base frame
- Resilient engine and generator mounting
- Modular base frame design

Exhaust system
- Exhaust bellows with connection flange
- Exhaust silencer with 10 dB(A) sound attenuation
- Exhaust silencer with 30 dB(A) sound attenuation
- Exhaust silencer with 40 dB(A) sound attenuation
- Y-connection-pipe

- Represents standard features
- Represents optional features
Weights and dimensions

Drawing above for illustration purposes only, based on a standard open power 400 Volt engine-generator set. Lengths may vary with other voltages. Do not use for installation design. See website for unit specific template drawings.

<table>
<thead>
<tr>
<th>System</th>
<th>Dimensions (L x W x H)</th>
<th>Weight (dry/less tank)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open power unit (OPU)</td>
<td>4440 x 1990 x 2200 mm</td>
<td>6550 kg</td>
</tr>
</tbody>
</table>

Weights and dimensions are based on open power units and are estimates only. Consult the factory for accurate weights and dimensions for your specific engine-generator set.

Sound data

— Consult your local MTU distributor for sound data.

Emissions data

— Consult your local MTU distributor for emissions data.

Rating definitions and conditions

— Prime Power for Stationary Emergency ratings apply to installations served by a reliable utility source. The standby rating is applicable to varying loads for the duration of a power outage. A 10% overload capacity is available for one hour in twelve. Ratings are in accordance with ISO 8528-1, ISO-3046-1, BS 5514 and AS 2789.
 Average load factor: ≤ 85%. Operating hours/year: max. 500.
— Consult your local MTU distributor for derating information.