Diesel Generator Set

MTU 16V2000 DS1250

380V - 415V/50 Hz/prime/fuel consumption optimized
16V2000G36F/air charge air cooling

Optional equipment and finishing shown. Standard may vary.

Product highlights

Benefits
— Low fuel consumption
— Optimized system integration ability
— High reliability and availability of power
— Long maintenance intervals
— Optimized ratio between size and power
— Wide operating range without derating

Support
— Global product support offered

Standards
— Engine-generator set is designed and manufactured in facilities certified to standards ISO 2008:9001 and ISO 2004:14001
— Generator set complies to G3 according to ISO 8528
— Generator meets NEMA MG1, BS5000, ISO, DIN EN and IEC standards
— NFPA 110

Power rating
— System rating: 1135 kVA
— Accepts rated load in one step per NFPA 110
— Generator set complies to G3 according to ISO 8528-5
— Generator set exceeds load steps according to ISO 8528-5

Performance assurance certification (PAC)
— Engine-generator set tested to ISO 8528-5 for transient response
— 75% load factor for prime power applications
— Verified product design, quality and performance integrity
— All engine systems are prototype and factory tested

Complete range of accessories available
— Control panel
— Power panel
— Fuel system
— Fuel connections with shut-off valve mounted to base frame
— Starting/charging system
— Exhaust system
— Mechanical radiator
— Oversized voltage alternators

Emissions
— Fuel consumption optimized
— NOx emission optimized, Tier 2 compliant and NEA (ORDE) optimization optionally available

Certifications
— CE certification option
— VDE4110 certification
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>MTU</td>
<td>MTU</td>
<td>Coolant flow rate (HT circuit): m³/hr</td>
<td>41.6</td>
<td>41.6</td>
</tr>
<tr>
<td>Type</td>
<td>4-cycle</td>
<td>4-cycle</td>
<td>Heat radiated to charge air cooling: kW</td>
<td>190</td>
<td>250</td>
</tr>
<tr>
<td>Arrangement</td>
<td>16V</td>
<td>16V</td>
<td>Heat radiated to ambient: kW</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Displacement: l</td>
<td>35.7</td>
<td>35.7</td>
<td>Fan power for mech. radiator (40°C):</td>
<td>43.4</td>
<td>43.4</td>
</tr>
<tr>
<td>Bore: mm</td>
<td>135</td>
<td>135</td>
<td>Fan power for mech. radiator (50°C):</td>
<td>43.4</td>
<td>43.4</td>
</tr>
<tr>
<td>Stroke: mm</td>
<td>156</td>
<td>156</td>
<td>Air flow required for mech. radiator (40°C) cooled unit: m³/min</td>
<td>1462</td>
<td>1462</td>
</tr>
<tr>
<td>Compression ratio</td>
<td>17.5</td>
<td>17.5</td>
<td>Air flow required for mech. radiator (50°C) cooled unit: m³/min</td>
<td>1462</td>
<td>1462</td>
</tr>
<tr>
<td>Rated speed: rpm</td>
<td>1500</td>
<td>1500</td>
<td>Engine coolant capacity (without cooling equipment): l</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Engine governor</td>
<td>ADEC (ECU 9)</td>
<td>ADEC (ECU 9)</td>
<td>Radiator coolant capacity (40°C): l</td>
<td>74</td>
<td>74</td>
</tr>
<tr>
<td>Speed regulation</td>
<td>± 0.25%</td>
<td>± 0.25%</td>
<td>Radiator coolant capacity (50°C): l</td>
<td>104</td>
<td>104</td>
</tr>
<tr>
<td>Max power: kWm</td>
<td>1000</td>
<td>1000</td>
<td>Max. coolant temperature (warning): °C</td>
<td>102</td>
<td>102</td>
</tr>
<tr>
<td>Mean effective pressure: bar</td>
<td>22.4</td>
<td>22.4</td>
<td>Max. coolant temperature (shutdown): °C</td>
<td>105</td>
<td>105</td>
</tr>
<tr>
<td>Fuel cleaner</td>
<td>dry</td>
<td>dry</td>
<td>Exhaust system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel consumption</td>
<td></td>
<td></td>
<td>Exhaust gas temp. (after turbocharger): °C</td>
<td>530</td>
<td>520</td>
</tr>
<tr>
<td>At 100% of power rating: l/hr g/kWh</td>
<td>231/192</td>
<td>242/201</td>
<td>Exhaust gas volume: m³/s</td>
<td>3.12</td>
<td>3.37</td>
</tr>
<tr>
<td>At 75% of power rating: l/hr g/kWh</td>
<td>173/192</td>
<td>183/203</td>
<td>Maximum allowable back pressure: mbar</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>At 50% of power rating: l/hr g/kWh</td>
<td>120/199</td>
<td>127/210</td>
<td>Minimum allowable back pressure: mbar</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Lube oil system</td>
<td></td>
<td></td>
<td>Generator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total oil system capacity: l</td>
<td>102</td>
<td>102</td>
<td>Protection class</td>
<td>IP23</td>
<td>IP23</td>
</tr>
<tr>
<td>Max. lube oil temp. (alarm): °C</td>
<td>103</td>
<td>103</td>
<td>Insulation class</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Max. lube oil temp. (shutdown): °C</td>
<td>105</td>
<td>105</td>
<td>Voltage regulation (steady state): ± 0.25%</td>
<td>± 0.25%</td>
<td></td>
</tr>
<tr>
<td>Min. lube oil pressure (alarm): bar</td>
<td>4.5</td>
<td>4.5</td>
<td>Rado interference class</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Min. lube oil pressure (shutdown): bar</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. All data refers only to the engine and is based on ISO standard conditions (25°C and 100m above sea level).
2. Emission optimized data refer to NOx emission optimized and NEA (ORDE) optimized/Tier 2 compliant engines.
3. Values referenced are in accordance with ISO 3046-1. Conversion calculated with fuel density of 0.83 g/ml. All fuel consumption values refer to rated engine power.
Standard and optional features

System ratings (kW/kVA)

<table>
<thead>
<tr>
<th>Generator model</th>
<th>Voltage</th>
<th>with mechanical radiator**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kWel</td>
<td>kVA*</td>
</tr>
<tr>
<td>Generator model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leroy Somer LSA 50.2 M6</td>
<td>380 V</td>
<td>908</td>
</tr>
<tr>
<td>(Low voltage Leroy Somer standard)</td>
<td>400 V</td>
<td>908</td>
</tr>
<tr>
<td></td>
<td>415 V</td>
<td>908</td>
</tr>
<tr>
<td>Leroy Somer LSA 50.2 L7</td>
<td>380 V</td>
<td>908</td>
</tr>
<tr>
<td>(Low voltage Leroy Somer oversized)</td>
<td>400 V</td>
<td>908</td>
</tr>
<tr>
<td></td>
<td>415 V</td>
<td>908</td>
</tr>
<tr>
<td>Marathon 740RSL7183</td>
<td>380 V</td>
<td>908</td>
</tr>
<tr>
<td>(Low voltage Marathon standard)</td>
<td>400 V</td>
<td>908</td>
</tr>
<tr>
<td></td>
<td>415 V</td>
<td>908</td>
</tr>
<tr>
<td>Marathon 742RSL7185</td>
<td>380 V</td>
<td>908</td>
</tr>
<tr>
<td>(Low voltage Marathon oversized)</td>
<td>400 V</td>
<td>908</td>
</tr>
<tr>
<td></td>
<td>415 V</td>
<td>908</td>
</tr>
</tbody>
</table>

* cos phi = 0.8
** BE, fuel optimized: max. power available up to: open power unit 40°C/400m; NOx emission optimized, EPA Tier 2 compl., NEA: standard operating conditions/open power unit 25°C/100m

Electrical outputs may vary depending on generator voltage and ambient conditions. For power outputs consult your MTU dealer.

Exhaust back pressure/mbar: 30mbar

Engine
- 4-cycle
- Standard single stage air filter
- Oil drain extension & shut-off valve
- Full flow oil filters
- Closed crankcase ventilation
- Governor-electronic isochronous ADEC/ECU9
- Common rail fuel injection
- Dry exhaust manifold
- Electric starting motor (24V)
- Fuel consumption optimized engine
- NOx emission optimized engine
- Tier 2 optimized engine
- NEA (ORDE) optimized engine

Generator
- Leroy Somer low voltage generator
- Meets NEMA MG1, B55000, IEC 60034-1, VDE 0530, DIN EN 12601, AS1359 and ISO 8528 requirements
- Superior voltage waveform
- Solid state, volts-per-Hertz regulator
- 4 pole three-phase synchronous generator
- Brushless, self-excited, self-regulating, self-ventilated
- Digital voltage regulator
- Anti condensation heater
- Stator winding Y-connected, accessible neutral (brought out)
- Protection IP 23
- less than 5% harmonic distortion
- 2/3 pitch stator windings
- No load to full load regulation
- ± 0.25% voltage regulation no load to full load
- Insulation class H, utilization acc. to H
- Radio suppression EN55011, group 1, cl. B
- Short circuit capability 3xIn for 10sec
- Sustained short circuit current of up to 300% of the rated current for up to 10 seconds (Leroy Somer generator)
- Winding and bearing RTDs (without monitoring)
- Excitation by AREP + PMI
- Mounting of CT’s: 3x 2 core CT’s
- Voltage setpoint adjustment ±10V
- Sustained short circuit current of up to 250% of the rated current for up to 10 seconds (Marathon generator)
- Marathon low voltage generator
- Oversized generator
Standard and optional features

Cooling system
- ■ Jacket water pump
- ■ Thermostat(s)
- ■ Air charge air cooling
- ■ Mechanical radiator
- □ Jacket water heater

Control Panel
- ■ Pre-wired control cabinet for easy application of customized controller (V1+)
- □ Island operation (V2)
- □ Automatic mains failure operation with ATS (V3a)
- □ Automatic mains failure operation incl. control of generator and mains breaker (V3b)
- □ Island parallel operation of multiple gensets (V4)
- □ Automatic mains failure operation with short (< 10s) mains parallel overlap synchronization (V5)
- □ Mains parallel operation of a single genset (V6)
- □ Mains parallel operation of multiple gensets (V7)
- ■ Basler controller
- □ Defi controller
- ■ Complete system metering
- ■ Digital metering
- ■ Generator protection functions
- ■ Engine protection
- ■ SAE J1939 engine ECU communications
- ■ Parametrization software
- ■ Multilingual capability
- ■ Multiple programmable contact inputs
- ■ Multiple contact outputs
- ■ Event recording
- □ IP 54 front panel rating with integrated gasket
- □ Different expansion modules
- □ Remote annunciator
- □ Daytank control
- □ Generator winding- and bearing temperature monitoring
- □ Differential protection with multi-function protection relay
- □ Modbus TCP-IP

Power Panel
- □ Available in 600x600
- □ Phase monitoring relay 230V/400V
- □ Supply for battery charger
- □ Supply for jacket water heater
- □ Plug socket cabinet for 230V compatible Euro

Fuel system
- ■ Flexible fuel connectors mounted to base frame
- □ Fuel filter with water separator
- □ Switchable fuel filter with water separator
- □ Fuel cooler

Starting/charging system
- ■ 24V starter
- □ Starter batteries, cables, rack, disconnect switch
- □ Battery charger
- □ Redundant starter 2x 7.5KW

Mounting system
- ■ Welded base frame
- ■ Resilient engine and generator mounting
- ■ Modular base frame design

Exhaust system
- □ Exhaust bellows with connection flange
- □ Exhaust silencer with 10 dB(A) sound attenuation
- □ Exhaust silencer with 30 dB(A) sound attenuation
- □ Exhaust silencer with 40 dB(A) sound attenuation
- □ Y-connection-pipe

- ■ Represents standard features
- □ Represents optional features
Weights and dimensions

Drawing above for illustration purposes only, based on a standard open power 400 Volt engine-generator set. Lengths may vary with other voltages. Do not use for installation design. See website for unit specific template drawings.

<table>
<thead>
<tr>
<th>System</th>
<th>Dimensions (L x W x H)</th>
<th>Weight (dry/less tank)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open power unit (OPU)</td>
<td>4440 x 1990 x 2200 mm</td>
<td>7100 kg</td>
</tr>
</tbody>
</table>

Weights and dimensions are based on open power units and are estimates only. Consult the factory for accurate weights and dimensions for your specific engine-generator set.

Sound data

- Consult your local MTU distributor for sound data.

Emissions data

- Consult your local MTU distributor for emissions data.

Rating definitions and conditions

- Prime power ratings apply to installations where utility power is unavailable or unreliable. At varying load, the number of generator set operating hours is unlimited. A 10% overload capacity is available for one hour in twelve. Ratings are in accordance with ISO 8528-1, ISO 3046-1, BS 5514 and AS 2789.
- Average load factor: ≤ 75%. Operating hours/year: unlimited
- Consult your local MTU distributor for derating information.