Diesel Generator Set # **mtu** 18V2000 DS1400 380V - 415V/50 Hz/data center continuous power/ fuel consumption optimized/NOx emission optimized/18V2000G26F Optional equipment and finishing shown. Standard may vary. # Product highlights #### **Benefits** - Low fuel consumption - Optimized system integration ability - High reliability and availability of power - Long maintenance intervals - Optimized ratio between size and power - Wide operating range without derating ### Support - Global product support offered #### **Standards** - Engine-generator set is designed and manufactured in facilities certified to standards ISO 2008:9001 and ISO 2004:14001 - Generator set complies to G3 according to ISO 8528 - Generator meets NEMA MG1, BS5000, ISO, DIN EN and IEC standards - NFPA 110 #### Power rating - System rating: 1250 kVA - Accepts rated load in one step per NFPA 110 - $-\,$ Generator set complies to G3 according to ISO 8528-5 - Generator set exceeds load steps according to ISO 8528-5 #### Performance assurance certification (PAC) - Engine-generator set tested to ISO 8528-5 for transient response - 100% load factor for continuous power applications - Verified product design, quality and performance integrity - All engine systems are prototype and factory tested # Complete range of accessories available - Control panel - Power panel - Fuel system - Fuel connections with shut-off valve mounted to base frame - Starting/charging system - Exhaust system - Mechanical radiator - Water Charge-Air-Cooler - Oversized voltage alternators #### **Cooling System** - Air-to-Air Charge-Air Cooling (TD) - Water-to-Air Charge-Air Cooling (TB) #### Emissions - Fuel consumption optimized - NOx emission optimized, Tier 2 and NEA (ORDE) optimization optionally available #### Certifications - CE certification option - Unit certificate acc. to VDE-AR-N 4110 # Application data 1) | Engine | Fuel consump. opt. | Emission opt. 2) | Cooling/radiator system TD/TB Fuel consump. of | opt. Emission opt. 2) | |-----------------------------------|--------------------|------------------|---|-----------------------| | Manufacturer | mtu | mtu | Coolant flow rate (HT circuit): m³/hr 4 | 6.3 46.3 | | Model | 18V2000G26F | 18V2000G26F | Coolant flow rate (LT circuit for TB): m ³ /hr | 17.5 | | Туре | 4-cycle | 4-cycle | Heat radiated to charge air cooling (TB): | | | Arrangement | 18V | 18V | kW (NOx) | 215 280 | | Displacement: l | 40.2 | 40.2 | Input pressure customer radiator (TB): bar (rel.) | 1.4 1.4 | | Bore: mm | 135 | 135 | Max. pressure loss customer radiator (TB): bar | 0.7 0.7 | | Stroke: mm | 156 | 156 | Heat dissipated by engine coolant: kW (NOx) | 425 | | Compression ratio | 17.5 | 17.5 | Heat radiated to ambient: kW | 45 45 | | Rated speed: rpm | 1500 | 1500 | Air flow required for mech. radiator (40°C) | | | Engine governor | ADEC | ADEC | cooled unit: m³/min 14 | 1462 1462 | | Speed regulation | ± 0.25% | ± 0.25% | Air flow required for mech. radiator (50°C) | | | Max power: kWm | 1102 | 1102 | cooled unit: m³/min 17 | 776 1776 | | Mean effective pressure: bar | 21.9 | 21.9 | Engine coolant capacity | | | Air cleaner | dry | dry | (without cooling equipment): I | 73 73 | | | | | Radiator coolant capacity (40°C): l | 83 83 | | Fuel system | | | Radiator coolant capacity (50°C): l | 106 106 | | Maximum fuel lift: m | 5 | 5 | Max. coolant temperature (warning): °C | 102 102 | | Total fuel flow: I/min | 30 | 30 | Max. coolant temperature (shutdown): °C | 105 105 | | Fuel consumption 3) | | | Exhaust system | | | At 100% of power rating: I/hr | 251/189 | 264/199 | Exhaust gas temp. (after turbocharger): °C | 485 480 | | At 75% of power rating: I/hr | 188/189 | 197/198 | Exhaust gas volume: m³/s 3 | 3.8 | | At 50% of power rating: I/hr | 130/196 | 135/204 | Maximum allowable back pressure: mbar | 50 50 | | | | | Minimum allowable back pressure: mbar | 30 30 | | Lube oil system | | | | | | Total oil system capacity: l | 110 | 110 | Generator | | | Max. lube oil temp. (alarm): °C | 103 | 103 | Protection class | P23 IP23 | | Max. lube oil temp. (shutdown): | °C 105 | 105 | Insulation class | H H | | Min. lube oil pressure (alarm): b | ar 4.5 | 4.5 | Voltage regulation (steady state) ± 0.2 | 5% ± 0.25% | | Min. lube oil pressure (shutdow | n): bar 4 | 4 | Rado interference class | N N | | Combustion air requirements | | | | | | Combustion air volume: m³/s | 1.34 | 1.48 | | | | Max. air intake restriction: mbar | 40 | 40 | | | All data refers only to the engine and is based on ISO standard conditions (25°C and 100m above sea level). ² Emission optimized data refer to NOx emission optimized and NEA (ORDE) optimized/Tier 2 compliant engines. ³ Values referenced are in accordance with ISO 3046-1. Conversion calculated with fuel density of 0.83 g/ml. All fuel consumption values refer to rated engine power. # Standard and optional features #### System ratings (kW/kVA) | Generator model | Voltage | with mechanical radiator (TD) or charge-air-cooler (TB)** | | | |---|---------|---|------|------| | | | kWel | kVA* | AMPS | | Leroy Somer LSA 50.2 L7
(Low voltage
Leroy Somer standard) | 380 V | 1000 | 1250 | 1899 | | | 400 V | 1000 | 1250 | 1804 | | | 415 V | 1000 | 1250 | 1739 | | Leroy Somer LSA 50.2 L8
(Low voltage
Leroy Somer oversized) | 380 V | 1000 | 1250 | 1899 | | | 400 V | 1000 | 1250 | 1804 | | | 415 V | 1000 | 1250 | 1739 | | Marathon 742RSL7185
(Low voltage
Marathon standard) | 380 V | 1000 | 1250 | 1899 | | | 400 V | 1000 | 1250 | 1804 | | | 415 V | 1000 | 1250 | 1739 | | Marathon 743RSL7187
(Low voltage
Marathon oversized) | 380 V | 1000 | 1250 | 1899 | | | 400 V | 1000 | 1250 | 1804 | | | 415 V | 1000 | 1250 | 1739 | ^{*} cos phi = 0.8 Electrical outputs may vary depending on generator voltage and ambient conditions. For power outputs consult your *mtu* dealer. Intake air depression/mbar: 15mbar Exhaust back pressure/mbar: 30mbar ## **Engine** - 4-cycle - Standard single stage air filter - Oil drain extension & shut-off valve - Full flow oil filters - Closed crankcase ventilation - Governor-electronic isochronous ADEC/ECU9 - Common rail fuel injection - Dry exhaust manifold - Electric starting motor (24V) - Fuel consumption optimized engine - $\hfill\square$ NOx emission optimized engine - ☐ Tier 2 optimized engine - □ NEA (ORDE) optimized engine ## Generator - Leroy Somer low voltage generator - Meets NEMA MG1, BS5000, IEC 60034-1, VDE 0530, DIN EN 12601, AS1359 and ISO 8528-3 requirements - Superior voltage waveform - Solid state, volts-per-Hertz regulator - 4 pole three-phase synchronous generator - Brushless, self-excited, self-regulating, self-ventilated - Digital voltage regulator - Anti condensation heater - Stator winding Y-connected, accessible neutral (brought out) - Protection IP 23 - less than 5% harmonic distorsion - 2/3 pitch stator windings - No load to full load regulation - ± 0.25% voltage regulation no load to full load - Insulation class H, utilization acc. to H - Radio suppression EN55011, group 1, cl. B - Short circuit capability 3xln for 10sec - Sustained short circuit current of up to 300% of the rated current for up to 10 seconds (Leroy Somer generator) - Winding and bearing RTDs (without monitoring) - Excitation by AREP + PMI - Mounting of CT's: 3x 2 core CT's - Voltage setpoint adjustment ±10V - Sustained short circuit current of up to 250% of the rated current for up to 10 seconds (Marathon generator) - ☐ Marathon low voltage generator - ☐ Oversized generator ^{**} BE, fuel optimized: max. power available up to: open power unit 40°C/400m; NOx emission optimized, EPA Tier 2 compl., NEA: standard operating conditions/open power unit 25°C/100m Represents standard features # Standard and optional features # Cooling system Represents standard featuresRepresents optional features | _ | • | | |------------|--------------------|----| | Air-to-Air | Charge-Air-Cooling | TD | | Mechanical radiatorJacket water pump | Expansion tankFan | ■ Thermostat(s) ☐ Jacket water heater | |---|--|---| | Water-to-Air Charge-Air-Cooling TB | | | | Coolant pumpManifold with thermostatic valves | ■ WCAC-base frame with safety covers | ☐ HT-piping with flexible engine connection | | Control panel | | | | ■ Pre-wired control cabinet for easy application of customized controller (V1+) □ Island operation (V2) □ Automatic mains failure operation with ATS (V3a) □ Automatic mains failure operation incl. control of generator and mains breaker (V3b) □ Island parallel operation of multiple gensets (V4) □ Automatic mains failure operation with short (< 10s) mains parallel overlap synchronization (V5) □ Mains parallel operation of a single genset (V6) | Mains parallel operation of multiple gensets (V7) Basler controller Deif controller Complete system metering Digital metering Engine parameters Generator protection functions Engine protection SAE J1939 engine ECU communications Parametrization software Multilingual capability Multiple programmable contact inputs Multiple contact outputs Event recording | ■ IP 54 front panel rating with integrated gasket □ Different expansion modules □ Remote annunciator □ Daytank control □ Generator winding- and bearing temperature monitoring □ Differential protection with multi-function protection relay □ Modbus TCP-IP | | Power panel | | | | □ Available in 600x600□ Phase monitoring relay 230V/400V | ☐ Supply for battery charger☐ Supply for jacket water heater | ☐ Plug socket cabinet for 230V compatible Euro | | Fuel system | | | | ■ Flexible fuel connectors mounted to base frame | ☐ Fuel filter with water separator ☐ Switchable fuel filter with water separator | ☐ Fuel cooler (for TD-only) | | Starting/charging system | | | | ■ 24V starter | Starter batteries, cables, rack,
disconnect switch | ☐ Battery charger
☐ Redundant starter 2x 7.5kW | | Mounting system | | | | Welded base frame | Resilient engine and generator mounting | ■ Modular base frame design | | Exhaust system | | | | Exhaust bellows with connection flange Exhaust silencer with 10 dB(A) sound attenuation | ☐ Exhaust silencer with 30 dB(A) sound attenuation | Exhaust silencer with40 dB(A) sound attenuationY-connection-pipe | # Weights and dimensions # Air-to-Air Charge-Air Cooling (TD) ## Water-to-Air Charge-Air Cooling (TB) Drawing above for illustration purposes only, based on a standard open power 400 Volt engine-generator set. Lengths may vary with other voltages. Do not use for installation design. See website for unit specific template drawings. | System | Dimensions (LxWxH) | Weight (incl. engine-oil and coolant) | |--|-----------------------|---------------------------------------| | Open power unit (OPU)
Air-to-Air (TD) | 4720 x 1990 x 2200 mm | 7850 kg | | Open power unit (OPU)
Water-to-Air (TB) | 4711 x 1988 x 2046 mm | 7500 kg | Weights and dimensions are based on open power units and are estimates only. Consult the factory for accurate weights and dimensions for your specific engine-generator set. # Sound data Consult your local mtu distributor for sound data. # **Emissions data** - Consult your local *mtu* distributor for emissions data. # Rating definitions and conditions - Data center continuous power ratings (DCP) apply to data center installations where a reliable utility power is available and comply with Uptime Institute Tier III and IV requirements. At constant or varying load, the number of generator set operating hours is unlimited. A 10% overload capacity is available for one hour in twelve. Ratings are in accordance with ISO 8528-1, ISO 3046-1, BS 5514 and AS 2789. Average load factor: ≤ 100%. - $-\,$ Consult your local \it{mtu} distributor for derating information.